Lanjutan Contoh Soal Transformasi

\begin{array}{ll}\\ \fbox{11}.&\textrm{Titik A(1,-2) dirotasikan sejauh}\: \: 15^{\circ}\: \: \textrm{kemudian dilanjutkan}\: \: 75^{\circ}\\ &\textrm{dengan pusat \textit{O}(0,0) maka bayangan akhir titik A adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad (-2,1)&&\textrm{d}.\quad (2,1)\\ \textrm{b}.\quad (-1,2)&\textrm{c}.\quad (1,2)&\textrm{e}.\quad (-2,-1) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}\begin{pmatrix} x'\\ y' \end{pmatrix}&=\begin{pmatrix} \cos (\theta _{1}+\theta _{2}) & -\sin (\theta _{1}+\theta _{2})\\ \sin (\theta _{1}+\theta _{2}) & \cos (\theta _{1}+\theta _{2}) \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos (75^{\circ}+15^{\circ})& -\sin (75^{\circ}+15^{\circ})\\ \sin (75^{\circ}+15^{\circ}) & \cos (75^{\circ}+15^{\circ}) \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 90^{\circ}&-\sin 90^{\circ}\\ \sin 90^{\circ}&\cos 90^{\circ} \end{pmatrix}\begin{pmatrix} 1\\ -2 \end{pmatrix}\\ &=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1\\ -2 \end{pmatrix}\\ &=\begin{pmatrix} 2\\ 1 \end{pmatrix} \end{aligned} \end{array}.

\begin{array}{ll}\\ \fbox{12}.&\textrm{Jika garis}\: \: 3x-2y+5=0\: \: \textrm{dicerminkan terhadap garis}\: \: y=-x\: \: \textrm{kemudian}\\ &\textrm{didilatasikan dengan pusat (1,-2) dengan faktor skala 2, maka persamaan bayangannya}\: ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad x-2y-10=0&&\textrm{d}.\quad x+2y-12=0\\ \textrm{b}.\quad x+2y-10=0&\textrm{c}.\quad x-6y+5=0&\textrm{e}.\quad 2x-3y+18=0 \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{e}\\ &\begin{array}{|c|c|}\hline \begin{aligned}\textrm{Proses}&\: \textrm{untuk refleksinya}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=\begin{pmatrix} 0&-1\\ -1&0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} -y\\ -x \end{pmatrix}\\ \textrm{proses}&\: \textrm{dilatasinya}\\ \begin{pmatrix} x''\\ y'' \end{pmatrix}&=\begin{pmatrix} 2&0\\ 0&2 \end{pmatrix}\begin{pmatrix} x'-1\\ y'+2 \end{pmatrix}+\begin{pmatrix} 1\\ -2 \end{pmatrix}\\ &=\begin{pmatrix} 2x'-2\\ 2y'+4 \end{pmatrix}+\begin{pmatrix} 1\\ -2 \end{pmatrix}\\ &=\begin{pmatrix} 2x'-1\\ 2y'+2 \end{pmatrix}\\ &=\begin{pmatrix} 2(-y)-1\\ 2(-x)+2 \end{pmatrix}\\ &\begin{cases} x &=-\displaystyle \frac{1}{2}(y''-2) \\ y &=-\displaystyle \frac{1}{2}(x''+1) \end{cases} \end{aligned} &\begin{aligned}\textrm{Sehingga persam}&\textrm{aan bayangan}\\ \textrm{garisnya adalah}:&\\ 3x&-2y+5=0\\ 3\left ( -\displaystyle \frac{1}{2}(y''-2) \right )&-2\left ( -\displaystyle \frac{1}{2}(x''+1) \right )+5=0\\ -\displaystyle \frac{3}{2}y''+3 &+(x''+1)+5=0\\ 2x&-3y+6+2+10=0\\ 2x&-3y+18=0\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned} \\\hline \end{array} \end{array}.

\begin{array}{ll}\\ \fbox{13}.&\textrm{Titik \textit{A}(4,-4) dicerminkan terhadap garis}\: \: y=x\tan 15^{\circ}\: \: \textrm{menghasilkan}\\ &\textrm{bayangan}\: \: A'(a,b)\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \sqrt{3}&&\textrm{d}.\quad 4\sqrt{3}\\ \textrm{b}.\quad 2\sqrt{3}&\textrm{c}.\quad 3\sqrt{3}&\textrm{e}.\quad 6\sqrt{3} \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}\begin{pmatrix} a\\ b \end{pmatrix}&=\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 2.15^{\circ}& \sin 2.15^{\circ}\\ \sin 2.15^{\circ} & -\cos 2.15^{\circ} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} \cos 30^{\circ}&\sin 30^{\circ}\\ \sin 30^{\circ}&-\cos 30^{\circ} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} \displaystyle \frac{1}{2}\sqrt{3} & \displaystyle \frac{1}{2}\\ \displaystyle \frac{1}{2} & -\displaystyle \frac{1}{2}\sqrt{3} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} 2\sqrt{3}-2\\ 2+2\sqrt{3} \end{pmatrix}\\ &\begin{cases} a &=2\sqrt{3}-2 \\ b &=2+2\sqrt{3} \end{cases}\\ \textrm{mak}&\textrm{a nilai dari}\: \: \: a+b=\left ( 2\sqrt{3}-2+2+2\sqrt{3} \right )=4\sqrt{3} \end{aligned} \end{array}.

\begin{array}{ll}\\ \fbox{14}.&\textrm{Lingkaran}\: \: x^{2}+y^{2}-5x+8y+7=0\: \: \textrm{ditranslasikan oleh}\: \: T=\begin{pmatrix} m\\ n \end{pmatrix}\\ &\textrm{menghasilkan bayangan}\: \: x^{2}+y^{2}-9x+2y+6=0\: .\: \textrm{Nilai}\: \: m+n=\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad 2&&\textrm{d}.\quad 5\\ \textrm{b}.\quad 3&\textrm{c}.\quad 4&\textrm{e}.\quad 6 \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}\textrm{Dik}&\textrm{etahui sebuah lingkaran dengan persamaan}:\: \: x^{2}+y^{2}-5x+8y+7=0\\ \textrm{kar}&\textrm{ena akibat translasi, maka}\\ &\begin{cases} x & =x'-m \\ y & =y'-n \end{cases}\\ &x^{2}+y^{2}-5x+8y+7=0\\ \textrm{seh}&\textrm{ingga}\\ &\Leftrightarrow (x'-m)^{2}+(y'-n)^{2}-5(x'-m)+8(y'-n)+7=0\\ &\Leftrightarrow x'^{2}+y'^{2}-2mx'-2ny'+m^{2}+n^{2}-5x'+5m+8y'-8n+7=0\\ &\Leftrightarrow x'^{2}+y'^{2}-(2m+5)x'+(8-2n)y'+m^{2}+n^{2}+5m-8n+7=0\\ &\qquad \equiv \: x'^{2}+y'^{2}-9x'+2y'+6=0\qquad (\textbf{akhir bayangan})\\ &\begin{cases} 9 &=2m+5 \Rightarrow m=2\\ 2 & =8-2n \: \Rightarrow \, \: n=3 \end{cases}\\ \textrm{Jad}&\textrm{i , nilai}\: \: m+n=2+3=5\end{aligned} \end{array}.

\begin{array}{ll}\\ \fbox{15}.&\textrm{Jika titik \textit{A}(-2,1) dicerminkan terhadap garis}\: \: y=-\displaystyle \frac{1}{3}x\sqrt{3}\: ,\: \textrm{maka bayangan dari}\\ &\textrm{titik \textit{A} tersebut adalah}\, ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad A'\left ( 1-\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right )&&\textrm{d}.\quad A'\left ( 1-\displaystyle \frac{1}{2}\sqrt{3},\displaystyle \frac{1}{2}-\sqrt{3} \right )\\ \textrm{b}.\quad A'\left ( -1-\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right )&\textrm{c}.\quad A'\left (-1-\displaystyle \frac{1}{2}\sqrt{3},\displaystyle \frac{1}{2}-\sqrt{3} \right )&\textrm{e}.\quad A'\left ( -1+\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right ) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{b}\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{bahwa}:\\ y&=-\displaystyle \frac{1}{3}x\sqrt{3}=\left ( -\displaystyle \frac{1}{3}\sqrt{3} \right )x=\left (-\tan 30^{\circ} \right )x=\tan \left ( 180^{\circ}-30^{\circ} \right )x=\tan 150^{\circ}.x\\ \textrm{maka}\: \: \theta &=150^{\circ}\quad \Rightarrow \quad 2\theta =300^{\circ}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 300^{\circ} & \sin 300^{\circ} \\ \sin 300^{\circ} & -\cos 300^{\circ} \end{pmatrix}\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &=\begin{pmatrix} \displaystyle \frac{1}{2} & -\displaystyle \frac{1}{2}\sqrt{3}\\ -\displaystyle \frac{1}{2}\sqrt{3} & -\displaystyle \frac{1}{2} \end{pmatrix}\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &=\begin{pmatrix} -1-\displaystyle \frac{1}{2}\sqrt{3}\\ \sqrt{3}-\displaystyle \frac{1}{2} \end{pmatrix} \end{aligned} \end{array}.

\begin{array}{ll}\\ \fbox{16}.&\textrm{Bayangan titik \textit{A}(2,4) dicerminkan terhadap garis}\: \: y-x=0\: \: \textrm{dilanjutkan}\\ &\textrm{ke garis}\: \: x\sqrt{3}-3y=0\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad A'\left ( 2+\sqrt{3},-1+2\sqrt{3} \right )&&\textrm{d}.\quad A'\left ( -2+\sqrt{3},1+2\sqrt{3} \right )\\ \textrm{b}.\quad A'\left ( 2+\sqrt{3},1-2\sqrt{3} \right )&\textrm{c}.\quad A'\left ( 1-\sqrt{3},-2+\sqrt{3} \right )&\textrm{e}.\quad A'\left ( 2-\sqrt{3},1-2\sqrt{3} \right ) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\begin{aligned}\textrm{Diketahui}&\\ &\begin{cases} x\sqrt{3}-3y=0 & \Leftrightarrow y=\displaystyle \frac{1}{3}\sqrt{3}x=\tan 30^{\circ}.x\\ x-y=0 & \Leftrightarrow y=x \end{cases}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 2.30^{\circ} & \sin 2.30^{\circ} \\ \sin 2.30^{\circ} & -\cos 2.30^{\circ} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2}\sqrt{3}\\ \displaystyle \frac{1}{2}\sqrt{3} & -\displaystyle \frac{1}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} 2\\ 4 \end{pmatrix}\\ &=\begin{pmatrix} \sqrt{3}+2\\ -1+2\sqrt{3} \end{pmatrix} \end{aligned} \end{array}.

Sumber Referensi

  1. Johanes, Kastolan, Sulasim. 2006. Kompetensi Matematika 3A SMA Kelas XII Program IPA Semester Pertama. Jakarta: Yudistira.
  2. Nugroho, P. A., Gunarto, D. 2013. Big Bank Soal-Bahas Matematika SMA/MA. Jakarta: WAHYUMEDIA.
  3. Sukino. 2015. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu Alam Berdasarkan Kurikulum 2013. Jakarta: ERLANGGA.

Tentang ahmadthohir1089

Nama saya Ahmad Thohir asli orang Purwodadi, Jawa Tengah, lahir di Grobogan 02 Februari 1980. Pendidikan : Tingkat dasar lulus dari MI Nahdlatut Thullab di desa Manggarwetan,kecamatan Godong lulus tahun 1993. dan untuk tingkat menengah saya tempuh di MTs Nahdlatut Thullab Manggar Wetan lulus tahun 1996. Sedang untuk tingkat SMA saya menamatkannya di MA Futuhiyyah-2 Mranggen, Demak lulus tahun 1999. Setelah itu saya Kuliah di IKIP PGRI Semarang pada fakultas FPMIPA Pendidikan Matematika lulus tahun 2004. Pekerjaan : Sebagai guru (PNS DPK Kemenag) mapel matematika di MA Futuhiyah Jeketro, Gubug. Pengalaman mengajar : 1. GTT di MTs Miftahul Mubtadiin Tambakan Gubug tahun 2003 s/d 2005 2. GTT di SMK Negeri 3 Semarang 2005 s/d 2009 3. GT di MA Futuhiyah Jeketro Gubug sejak 1 September 2009
Pos ini dipublikasikan di Info, Matematika, Pendidikan. Tandai permalink.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s